I. 北美经济系博士一年级的训练应该都很标准,基本上是两学期上完六门三高(微观/宏观/计量 I&II)。第一年结束后是资格考,然后第二年才开始进入各类fields课程。此处列下一些当时整理的资料:
Micro
J. Levin’s Micro Notes
Macro
1.General Notes: Dirk Krueger’s Notes (2012) & Per Krusell’s Notes (2014)
2. Violante’s Heterogeneity in Macroeconomics (2014 Spring)
Econometrics
Hensen’s Econometrics Notes (2020)
II. 第一年之后可能会有用的工具:
Structural Model
1. Discrete Choice Methods with Simulation, by Kenneth Train
2. Practical Methods for Estimation of Dynamic Discrete Choice Models, by Arcidiacono and Ellickson
Big Data & ML
1. Matt Taddy’s Big Data Course
2.Thorsten Joachims’s Counterfactual Machine Learning
3. Benjamin Soltoff’s Computing for the Social Science
4. Econ-ML
5. AEA: Machine Learning and Econometrics (Susan Athey, Guido Imbens)
6. “Machinistas meet randomistas: useful ML tools for empirical researchers” by Esther Duflo at NBER SI 2018
7. Nando de Freitas’s Youtube channel
III. 还有一些编程的资料:
Python
1. Learn Python 3 the Hard Way
3. Python Data Science Handbook
R
1. R in Action (Book)
2. Hadley Wickham’s R for Data Science
3. Hadley Wickham’s Advanced R with a recommended Solutions
6. Efficient R programming (2017) by Gillespie & Lovelace
7. Text Mining with R: A Tidy Approach
8. R FOR STATA USERS by Matthieu Gomez
LaTeX
1. The Not So Short Introduction To LaTeX (Chinese Version, 2017)
2.Wikibooks: LaTeX or Presentation
3. John C Frain’s Applied LATEX for Economists, Social Scientists and Others (2014)
GIS
1.MIT GIS Workshop
2. R as GIS for Economist by Taro Mieno
Stata
1. Stata Coding Guide by Julian Reif
2. Stata for very large datasets
3. NP Packages
HTML & CSS
Learn to code HTML & CSS by Shay Howe